Indian Statistical Institute, Bangalore

B. Math.

First Year, First Semester Analysis I

Mid-term examination Total Marks: 105 Maximum marks: 100 Date : Sept. 9, 2019 Time: 3 hours

Notation: $\mathbb{N} = \{1, 2, 3, ...\}$ -the set of natural numbers. \mathbb{R} -the set of real numbers.

- (1) Show that the set of functions $f : \mathbb{N} \to \{1, 2\}$ satisfying $f(i) \leq f(j)$ for all $1 \leq i \leq j$, is countable. [15]
- (2) Show that the set of natural numbers is unbounded. Use this and prove the Archimedean property for real numbers. [15]
- (3) Let {h_n}_{n≥1} be the sequence of real numbers defined recursively by: h₁ = 1 and h_n = h_{n-1} + ¹/_n for n ≥ 2. Show that the sequence {h_n}_{n≥1} is not bounded. (Hint: ¹/₃ + ¹/₄ > ¹/₄ + ¹/₄; ¹/₅ + ¹/₆ + ¹/₇ + ¹/₈ > ¹/₈ + ¹/₈ + ¹/₈ etc.) [15]
 (4) Let {c_n}_{n≥1} be a sequence of non-zero real numbers converging to a non-zero real number a. Show that ¹/_{c_n} converges to ¹/_a. [15]
 (5) Let {x_n}_{n≥1} be a bounded sequence and L be its set of limit points. Let {a_n}_{n≥1}
- be a sequence with $a_n \in L$ for every n. Suppose $\{a_n\}_{n\geq 1}$ converges to b. Show that $b \in L$. |15|
- (6) Let $\{a_n\}_{n\geq 1}$ be a bounded sequence of real numbers satisfying $a_n \geq \frac{1}{4}$ for all $n\geq 1$. Prove or disprove the following statements:

(i)
$$\limsup_{n \to \infty} (a_{n+1} - a_n) = 0.$$

(ii)
$$\limsup_{n \to \infty} (a_n^2) = (\limsup_{n \to \infty} a_n)^2.$$

(iii)
$$\limsup_{n \to \infty} (\frac{1}{a_n}) = \frac{1}{\liminf_{n \to \infty} a_n}.$$

(7) Obtain a bounded sequence whose set of limit points is given by

$$\{0\} \bigcup \{\frac{1}{n} : n \ge 1\}.$$

Prove your claim.

[15]

[15]